If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(2x^2-96)/(3x^2)=0
Domain of the equation: 3x^2!=0We multiply all the terms by the denominator
x^2!=0/3
x^2!=√0
x!=0
x∈R
-(2x^2-96)=0
We get rid of parentheses
-2x^2+96=0
a = -2; b = 0; c = +96;
Δ = b2-4ac
Δ = 02-4·(-2)·96
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-2}=\frac{0-16\sqrt{3}}{-4} =-\frac{16\sqrt{3}}{-4} =-\frac{4\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-2}=\frac{0+16\sqrt{3}}{-4} =\frac{16\sqrt{3}}{-4} =\frac{4\sqrt{3}}{-1} $
| y/3+17=29 | | 4(2+x)=3 | | (2x+7)^2=59 | | 3x-5=7-8x | | m+20/6=4 | | 17x+100=360 | | -12x-60=32 | | 0=-3x-2x+17 | | -9(w-2)=8w+1 | | -4(2-5n)-10=10-8n | | x^2+1=-8x | | 4x+36=6(x+4) | | -1(x-1)=1-x | | 62=(13x-25) | | 62=(13x-25 | | 34+9x=180 | | 1=a÷4 | | 2=-6x+4(x+2) | | 4+-4r=16 | | –5+5c=6c | | -6v+4(v-2)=-14 | | 5x+9=3x–25 | | 2=-2t=10 | | w-36/8=6 | | y=2+6*10 | | 44-19=5(x-1) | | y/9-13=-9 | | y=2+6*4 | | y=2+6*2 | | 5x-8-2x14=x+8+2x+13 | | 43/10-(22/5x+51/2)-(1/2(-33/5x+11/5)=0 | | y=2+6*1 |